DATE: 4/01/97
CONTROLLING OFFICE FOR THIS DOCUMENT IS:
DIRECTOR, Army High Performance Computing
Research Center (AHPCRC)
Army Research Laboratory
Aberdeen, MD 2.100¢€
POC: Director (Tayn E. Tezduyar)

DISTRIBUTION STATEMENT A: Public release

%‘

YUTICH SEAYOMENT K l
Approves w1 pupiic reiecset
. _wmgfmmzm Uuurmsed




Finite Element Flow Code Optimization on the
Cray T3D

Sum 95
byStephon Saroff (AHPCRC-MSCI)

This is a second article on the porting and optimization of an
AHPCRC finite element code on a Cray T3D. The first article
appeared in the Winter/Spring 1995 issue of the AHPCRC Bulletin.

A Cray T3D system was installed at the Minnesota Supercomputer
Center, Inc. (MSCI) in the Fall of 1993. At the present time, the
system is configured with 512 processing elements and 32.8
Gigabytes of memory. Through a gift of time from MSCI and other
arrangements, the AHPCRC has limited access to this system.

Figure 1. Flow past an aircraft modeled after 747. Pressure
distribution on the aircraft surface at an inviscid flow
condition of Mach 0.25.

The research group of Tayfun Tezduyar (Professor of Aerospace
Engineering and Mechanics) ported a finite element flow solver,
originally developed on and optimized for the Thinking Machines
Corporation CM-5, to the Cray T3D. Since the Cray T3D provides
more robust support for message passing models than for data
parallel structures, the port required a translation of the code
from data parallel CMF on the CM-5 to PVM message passing and
nodal F77 on the T3D. The port involved manually decomposing the
codes data structures and explicitly coding inter-processor
communications. This was done by Marek Behr, an Assistant
Professor at the AHPCRC, and Shahrouz Aliabadi, a Research
Associate at the AHPCRC, and was described in the Winter/Spring
1995 Bulletin. Examples of compressible flow simulations, carried

19970401 102




out by the 1995 Summer Institute students, are shown in Figures 1
and 2.

Figure 2. Flow past a missile geometry provided by ARL. Pressure
distribution on the missile surface at an inviscid flow condition
of Mach 2.5

The node level computations of the initial port of the code
performed relatively poorly. This was not surprising. Although
CM-5 and T3D processing nodes have similar nominal performance
specifications (128 Mflops/node on the CM-5 compared to 150
Mflops/node on the T3D), their architectures are very different.

Table 1 provides the timing results following the initial port.
Time to completion for the entire code is shown along with
execution times of each of the major routines within that code.
These major routines collectively account for over 95% of the
total execution time.

T3D CM-5
time to completion 3538.52 2097.81
blkuvp 2052.24 991.44
get_jac_turb 315.56 169.68
gen_matrix vector mult noadd 455.89 203.03
scatter 358.16 259.69
gather 207.48 200.35

Table 1. Initial comparison of CM-5 and T3D timings (execution
time in seconds on 32 nodes).

This author, with the participation of analysts from Cray
Research and MSCI, undertook an effort to improve the nodal




performance of the code (i. e. Reduce the computation time
required per processing element).

An examination of the incompressible flow code with non-matrix-
free solver disclosed that the routines blkuvp, get_jac_turb and
gen_matrix_vector mult noadd are compute intensive routines. The
routines scatter and gather are inter-processor communications
routines. It was decided to concentrate optimization efforts on
blkuvp and get jac turb. The gen_matrix vector mult noadd is a
matrix algebra routine and should be optimized through calls to
math library functions.

The optimization effort focused on issues of efficient register
and cache usage, primarily through index reordering and use of
temporaries. This is required because the T3D processing element
uses an EV-4 Alpha microprocessor which has only one port to
memory, a limited number of floating point registers (32), and
only one cache (1K 64-bit words).

In the original CM-5 version of blkuvp, the bulk of the execution
time was spent in a series of loops nested three deep, which
(translated from CMF to F77) were of the form:

do na = 1,nen
na0 = (na-1) * ndf
nau = na0 + udf

nav = na0 + vdf

do nb = 1,nen
nbp = (nb-1) * ndf + pdf

shOsh0 (ie) = sq(0,na,iq) * sq(0,nb,iq)

shlshO(ie) = sh(1l,na,ie) * sq(0,nb,iq)

sh2sh0(ie) = sh(2,na,ie) * sg(0,nb, 1q)

tmpl (ie) = - shlshO(ie) * eff0(ie) + gua(ie) * sh(l,nb,ie)
* effs(ie)

tmp2 (ie) = - sh2sh0(ie) * effO(ie) + gua(ie) * sh(2,nb, ie)

* effs(ie)
s (nau,nbp, ie) s (nau,nbp,ie) + tmpl(ie)
s (nav,nbp, ie) = s(nav,nbp,ie) + tmp2 (ie)

It was observed that there were a significant number of arrays of
temporaries, for example:

do ie = 1,nec
shlshO(ie) = sh(l,na,iq) * 5q(0,nb,iq)
sh2shO(ie) = sh(2,na,ie) * sq(0,nb,iq)

While this is a necessary technique in CMF data parallel
programming, it is not optimal on scalar or vector processors.
Instead, the temporary arrays were replaced with scalar
temporaries. This allows the compiler to keep values in
registers and avoid cache misses.




do ie = 1,nec
myshlna = sh(l,na,ie)
mysh2na = sh(2,na,ie)
mysgOnb = sg(0,nb,iq)
myshlsh0 = myshlna * mysqOnb
mysh2sh0 = mysh2na * mysqgOnb

This change reduced the time to completion of the main loop of
"blkuvp" by more than 50%. To ensure more efficient memory
access, and to avoid cache misses, the loop order was then
changed to allow the right most array index to be associated with
the outermost do loop (the index ie was generally the right

most index).

do ie = 1,nec
do nb = 1,nen

nbp =(nb - 1) * ndf + pdf

do na = 1,nen
na0 = (na-1) * ndf
nau = nal + udf
nav = nal0 + vdf
myshlna = sh(l,na,ie

)
mysh2na = sh(2,na,ie)
mysgOnb = sq(O nb,iq)
myshlnb = sh(l,nb,ie)
mysh2nb = sh(2 nb, ie)

myshlsh0 = myshlna * mysqOnb
mysh2sh0 = mysh2na * mysqgOnb

tmpl

= — myshlsh0 * eff0 + gua * myshlnb * effs
tmp2 = - mysh2sh0 * eff0 + gua * mysh2nb * effs
s (nau, nbp, ie) = s(nau,nbp,ie) + tmpl
s (nav,nbp, ie) = s(nav,nbp,ie) + tmp2
Orignal Code Using Temporaries Both Tempories and Reordering
blkuvp (all) 2052.24 1275.32 1094.70
lkuvp (main loop) 1859.97 744 .00 616.22

Table 2. Improvements in "blkuvp" performance (execution time in
seconds on 32 nodes).

This restructuring resulted in an additional performance
improvement in the main loop of blkuvp, whereby the execution
time was reduced to 33% of its pre-optimization time. The results
are shown in Table 2.

Similar steps were undertaken for "get jac turb". That is, loop
order was reversed and temporaries replaced.

T3D CM-5




time to completion 2164.81 2097.81
blkuvp 880.96 991.44
get_jac_turb 151.45 169.68
gen_matrix vector mult noadd 450.72 203.03
scatter 326.03 259.69
gather 206.69 200.35

Table 3. Final comparison of CM-5 and T3D timings (execution
time in seconds on 32 nodes).

The purpose of using scalar temporaries was to improve cache and
register usage, thus reducing the amount of costly memory access.
Each scalar value retained by the compiler in a register
eliminates the need to access either cache (at 3 cycles per
access) or main memory (at 22-39 cycles per access) for

that value. However, since there are far more temporaries than
registers (resulting in the spilling of some temporaries to
cache), the improvement of the codes performance cannot be
entirely attributed to register usage. This can be seen from the
fact that significant gains in performance could be produced
without a significant reduction in the number of private loads.
With the substantial time saved by loading values from cache
rather than from memory, a significant portion of the performance
increase resulted from enabling the compiler to maintain cache
integrity (i.e. keeping values in the cache, rather than having
to read them from main memory). The final comparison is shown in
Table 3.




Larger Scale Simulation Capability for Ram
Air Parafoils is Achieved on the Cray T3D

by Shahrouz Aliabadi (AHPCRC-UMN) Sum 4S8’

Realistic numerical simulations of complex flows require very
high grid resolutions. Using highly refined meshes in numerical
simulations not only improves the accuracy of the solution but
also may predict some small-scale physical characteristics such
as high frequency modes in turbulence. These physical
characteristics might be absent in a solution obtained from a
coarser mesh. The major barriers involved in these large-scale
computations are memory and CPU time. Efficient algorithms and
advanced hardware with sufficient computational power are the
keys to removing the barriers involved in large scale
simulations.

The author of this article, a member of the research team of
Tayfun Tezduyar, Professor of Aerospace Engineering and
Mechanics, is carrying out very large scale computations to
predict the flow field and the dynamics of ram air parafoils. The
steady-state performance of these parafoils is simulated using a
finite element mesh consisting of 9,741,930 nodes and 9,595,520
hexahedral elements. A coupled nonlinear system of equations with
38,391,715 unknowns is solved at every time step. The Cray T3D
with 512 processors and highly optimized finite element flow
solvers were utilized to solve this problem. The AHPCRC has,
under special arrangements, limited access to this Cray T3D owned
and operated by the Minnesota Supercomputer Center, Inc.

The finite element flow solvers used are based on state-of-the-
art stabilized formulations which maintain their numerical
stability and accuracy even at high Mach numbers and high
Reynolds numbers. The formulations are also capable of

handling problems with moving boundaries and interfaces. The
coupled equation systems arising from the finite element
discretization are solved using matrix-free iteration techniques.
The matrix-free iterations totally eliminate the need to store
the element-level matrices corresponding to the left-hand-side
matrix. This significantly reduces the memory requirements in
finite element computations.




Figure 1. Air flow past a large ram air parafoil is simulated on
the Cray T3D with 512 processors. The finite element mesh used
in this computation consists of 9,741,930 nodes and 9,595,520
elements which results in 38,391,715 coupled equations. The
picture shows the computed flow past a large ram air parafoil
during a steady-state gliding descent at two degrees angle of
attack and a Reynolds number of 10 million. Algebraic turbulence
models are utilized for this high Reynolds number flow. The
colors depict the pressure distibution on the parafoil surface.

Dealing with the large data sets involved in these computations
at this scale was a major undertaking. Special techniques were
used to display the pressure distribution on the parafoil
surface. The visualization of such large data sets is still an
open issue in flow simulations involving complex, real-world
problems, and needs further research.




